File size: 7,086 Bytes
edacdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
import pandas as pd

import scipy.stats as stats
import statsmodels.api as sm
from statsmodels.formula.api import ols
from statsmodels.regression.linear_model import RegressionResultsWrapper
from statsmodels.stats.multicomp import pairwise_tukeyhsd

from matplotlib.figure import Figure
import seaborn as sns
import panel as pn

import com_const as cc
import com_func as cf
import com_image as ci

stars = [-np.log(0.05), -np.log(0.01), -np.log(0.001), -np.log(0.0001)]


def plot_single_progression(
    ax,
    df,
    target,
    title: str,
    hue="gen",
    style="gen",
    show_legend: bool = False,
):
    lp = sns.lineplot(
        df.sort_values(hue),
        x="dpi",
        y=target,
        hue=hue,
        markers=True,
        style=style,
        dashes=False,
        palette="tab10",
        markersize=12,
        ax=ax,
    )
    lp.set_yticklabels(["", "3", "", "5", "", "7", "", "9"])
    ax.set_title(title)
    if show_legend is True:
        sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
    else:
        ax.get_legend().set_visible(False)


def get_model(
    df: pd.DataFrame, target: str, formula: str, dpi: int = None
) -> RegressionResultsWrapper:
    df_ = df[df.dpi == dpi] if dpi is not None else df
    return ols(f"{target} {formula}", data=df_).fit()


def anova_table(aov, add_columns: bool = True):
    """
    The function below was created specifically for the one-way ANOVA table
    results returned for Type II sum of squares
    """
    if add_columns is True:
        aov["mean_sq"] = aov[:]["sum_sq"] / aov[:]["df"]

        aov["eta_sq"] = aov[:-1]["sum_sq"] / sum(aov["sum_sq"])

        aov["omega_sq"] = (
            aov[:-1]["sum_sq"] - (aov[:-1]["df"] * aov["mean_sq"][-1])
        ) / (sum(aov["sum_sq"]) + aov["mean_sq"][-1])

        cols = ["sum_sq", "df", "mean_sq", "F", "PR(>F)", "eta_sq", "omega_sq"]
        aov = aov[cols]
    return aov


def plot_assumptions(models: list, titles: list, figsize=(12, 4)):
    fig = Figure(figsize=figsize)
    fig.suptitle("Probability plot of model residual's", fontsize="x-large")
    axii = fig.subplots(1, len(models))
    for ax, model, title in zip(axii, models, titles):
        _ = stats.probplot(model.resid, plot=ax, rvalue=True)
        ax.set_title(title)

    return fig


def hghlight_rejection(s):
    df = pd.DataFrame(columns=s.columns, index=s.index)
    df.loc[s["reject_pred"].ne(s["reject_obs"]), ["group1", "group2"]] = (
        "background: red"
    )
    df.loc[s["reject_pred"].eq(s["reject_obs"]), ["group1", "group2"]] = (
        "background: green"
    )
    df.loc[s.reject_pred, ["reject_pred"]] = "background: green"
    df.loc[~s.reject_pred, ["reject_pred"]] = "background: red"
    df.loc[s.reject_obs, ["reject_obs"]] = "background: green"
    df.loc[~s.reject_obs, ["reject_obs"]] = "background: red"
    return df


def get_tuckey_df(endog, groups, df_genotypes) -> pd.DataFrame:
    tukey = pairwise_tukeyhsd(endog=endog, groups=groups)
    df_tuc = pd.DataFrame(tukey._results_table)
    df_tuc.columns = [str(c) for c in df_tuc.iloc[0]]
    ret = (
        df_tuc.drop(df_tuc.index[0])
        .assign(group1=lambda s: s.group1.astype(str))
        .assign(group2=lambda s: s.group2.astype(str))
        .assign(reject=lambda s: s.reject.astype(str) == "True")
    )
    ret["p-adj"] = tukey.pvalues
    if df_genotypes is None:
        return ret
    else:
        return (
            ret.merge(right=df_genotypes, how="left", left_on="group1", right_on="gen")
            .drop(["gen"], axis=1)
            .rename(columns={"rpvloci": "group1_rpvloci"})
            .merge(right=df_genotypes, how="left", left_on="group2", right_on="gen")
            .drop(["gen"], axis=1)
            .rename(columns={"rpvloci": "group2_rpvloci"})
        )


def get_tuckey_compare(df, df_genotypes=None, groups: str = "gen"):
    merge_on = (
        ["group1", "group2"]
        if df_genotypes is None
        else ["group1", "group2", "group1_rpvloci", "group2_rpvloci"]
    )
    df_poiv = get_tuckey_df(df.p_oiv, df[groups], df_genotypes=df_genotypes)
    df_oiv = get_tuckey_df(df.oiv, df[groups], df_genotypes=df_genotypes)
    df = pd.merge(left=df_poiv, right=df_oiv, on=merge_on, suffixes=["_pred", "_obs"])
    return df


def df_tukey_cmp_plot(df, groups):
    df_tukey = (
        get_tuckey_compare(df=df, groups=groups, df_genotypes=None)
        .assign(pair_groups=lambda s: s.group1 + "\n" + s.group2)
        .sort_values("p-adj_obs")
    )

    df_tukey_reject = df_tukey[df_tukey.reject_obs & df_tukey.reject_pred]
    df_tukey_accept = df_tukey[~df_tukey.reject_obs & ~df_tukey.reject_pred]
    df_tukey_diverge = df_tukey[df_tukey.reject_obs != df_tukey.reject_pred]

    fig = Figure(figsize=(20, 6))
    ax_reject, ax_diverge, ax_accept = fig.subplots(
        1,
        3,
        gridspec_kw={
            "width_ratios": [
                len(df_tukey_reject),
                len(df_tukey_diverge),
                len(df_tukey_accept),
            ]
        },
        sharey=True,
    )

    for ax in [ax_reject, ax_accept, ax_diverge]:
        ax.set_yticks(ticks=stars, labels=["*", "**", "***", "****"])
        ax.grid(False)

    ax_reject.set_title("Rejected")
    ax_diverge.set_title("Conflict")
    ax_accept.set_title("Accepted")

    for ax, df in zip(
        [ax_reject, ax_accept, ax_diverge],
        [df_tukey_reject, df_tukey_accept, df_tukey_diverge],
    ):
        for star in stars:
            ax.axhline(y=star, linestyle="-", color="black", alpha=0.5)
        ax.bar(
            x=df["pair_groups"],
            height=-np.log(df["p-adj_pred"]),
            width=-0.4,
            align="edge",
            color="green",
            label="predictions",
        )
        ax.bar(
            x=df["pair_groups"],
            height=-np.log(df["p-adj_obs"]),
            width=0.4,
            align="edge",
            color="blue",
            label="scorings",
        )
        ax.margins(0.01)

    ax_accept.legend(loc="upper left", bbox_to_anchor=[0, 1], ncols=1, fancybox=True)
    ax_reject.set_ylabel("-log(p value)")
    ax_reject.tick_params(axis="y", which="major", labelsize=16)

    fig.subplots_adjust(wspace=0.05, hspace=0.05)

    return fig


def plot_patches(df, diff_only: bool = True):
    if diff_only is True:
        df = df[(df.oiv != df.p_oiv)]
    df = df.assign(diff=lambda s: s.oiv != s.p_oiv).sort_values(
        ["diff", "oiv", "p_oiv"]
    )
    return pn.GridBox(
        *[
            pn.Column(
                pn.pane.Markdown(f"### {row.file_name}|{row.oiv}->p{row.p_oiv}"),
                pn.pane.Image(
                    object=ci.enhance_pil_image(
                        image=ci.load_image(
                            file_name=row.file_name,
                            path_to_images=cc.path_to_leaf_patches,
                        ),
                        brightness=1.5,
                    )
                ),
            )
            for _, row in df.iterrows()
        ],
        ncols=len(df),
    )