import os import requests # Disable JIT os.environ["PYTORCH_JIT"] = "0" from einops import rearrange import gradio as gr import numpy as np import spaces import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image, ImageOps from transformers import AutoModel, CLIPImageProcessor from segment_anything import SamAutomaticMaskGenerator, sam_model_registry from segment_anything.modeling.image_encoder import ImageEncoderViT class RADIOVenc(nn.Module): def __init__(self, radio: nn.Module, img_enc: ImageEncoderViT, img_size: int = 1024): super().__init__() self.radio = radio self.neck = img_enc.neck self.img_size = img_size self.dtype = radio.input_conditioner.dtype def forward(self, x: torch.Tensor): h, w = x.shape[-2:] if self.dtype is not None: x = x.to(dtype=self.dtype) with torch.autocast('cuda', dtype=torch.bfloat16, enabled=self.dtype is None): output = self.radio(x) features = output["sam"].features rows = h // 16 cols = w // 16 features = rearrange(features, 'b (h w) c -> b c h w', h=rows, w=cols) features = self.neck(features) return features def download_file(url, save_path): # Check if the file already exists if os.path.exists(save_path): print(f"File already exists at {save_path}. Skipping download.") return print(f"Downloading from {url}") # Send a GET request to the URL response = requests.get(url, stream=True) # Check if the request was successful if response.status_code == 200: # Open the file in binary write mode with open(save_path, 'wb') as file: # Iterate over the response content in chunks for chunk in response.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks file.write(chunk) print(f"File downloaded successfully and saved as {save_path}") else: print(f"Failed to download file. HTTP Status Code: {response.status_code}") hf_repo = "nvidia/RADIO-L" image_processor = CLIPImageProcessor.from_pretrained(hf_repo) model_version = "radio_v2.5-l" # for RADIOv2.5-L model (ViT-L/16) model = torch.hub.load( 'NVlabs/RADIO', 'radio_model', version=model_version, progress=True, skip_validation=True, adaptor_names='sam') model.eval() local_sam_checkpoint_path = "sam_vit_h_4b8939.pth" download_file("https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", local_sam_checkpoint_path) sam = sam_model_registry["vit_h"](checkpoint=local_sam_checkpoint_path) model._patch_size = 16 sam.image_encoder = RADIOVenc(model, sam.image_encoder, img_size=1024) conditioner = model.make_preprocessor_external() sam.pixel_mean = conditioner.norm_mean * 255 sam.pixel_std = conditioner.norm_std * 255 def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False): # features: (N, C) # m: a hyperparam controlling how many std dev outside for outliers assert len(features.shape) == 2, "features should be (N, C)" reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2] colors = features @ reduction_mat if remove_first_component: colors_min = colors.min(dim=0).values colors_max = colors.max(dim=0).values tmp_colors = (colors - colors_min) / (colors_max - colors_min) fg_mask = tmp_colors[..., 0] < 0.2 reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2] colors = features @ reduction_mat else: fg_mask = torch.ones_like(colors[:, 0]).bool() d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values) mdev = torch.median(d, dim=0).values s = d / mdev try: rins = colors[fg_mask][s[:, 0] < m, 0] gins = colors[fg_mask][s[:, 1] < m, 1] bins = colors[fg_mask][s[:, 2] < m, 2] rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()]) rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()]) except: rins = colors gins = colors bins = colors rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()]) rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()]) return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat) def get_pca_map( feature_map: torch.Tensor, img_size, interpolation="bicubic", return_pca_stats=False, pca_stats=None, ): """ feature_map: (1, h, w, C) is the feature map of a single image. """ if feature_map.shape[0] != 1: # make it (1, h, w, C) feature_map = feature_map[None] if pca_stats is None: reduct_mat, color_min, color_max = get_robust_pca( feature_map.reshape(-1, feature_map.shape[-1]) ) else: reduct_mat, color_min, color_max = pca_stats pca_color = feature_map @ reduct_mat pca_color = (pca_color - color_min) / (color_max - color_min) pca_color = pca_color.clamp(0, 1) pca_color = F.interpolate( pca_color.permute(0, 3, 1, 2), size=img_size, mode=interpolation, ).permute(0, 2, 3, 1) pca_color = pca_color.cpu().numpy().squeeze(0) if return_pca_stats: return pca_color, (reduct_mat, color_min, color_max) return pca_color def pad_image_to_multiple_of(image, multiple=16): # Calculate the new dimensions to make them multiples width, height = image.size new_width = (width + multiple -1) // multiple * multiple new_height = (height + multiple -1) // multiple * multiple # Calculate the padding needed on each side pad_width = new_width - width pad_height = new_height - height left = pad_width // 2 right = pad_width - left top = pad_height // 2 bottom = pad_height - top # Apply the padding padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black') return padded_image def center_crop_resize(image, size=(1024, 1024)): # Get dimensions width, height = image.size # Determine the center crop box if width > height: new_width = height new_height = height left = (width - new_width) / 2 top = 0 right = (width + new_width) / 2 bottom = height else: new_width = width new_height = width left = 0 top = (height - new_height) / 2 right = width bottom = (height + new_height) / 2 # Crop the image to a square image = image.crop((left, top, right, bottom)) # Resize the cropped image to the target size image = image.resize(size, Image.LANCZOS) return image def visualize_anns(orig_image: np.ndarray, anns): if len(anns) == 0: return orig_image sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) kernel = torch.ones(1, 1, 5, 5, dtype=torch.float32) # RGBA mask = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4), dtype=np.float32) mask[:,:,3] = 0 for ann in sorted_anns: m = ann['segmentation'] color_mask = np.concatenate([np.random.random(3), [0.35]]) tm = torch.as_tensor(m).reshape(1, 1, *m.shape).float() cvtm = F.conv2d(tm, kernel, padding=2) border_mask = (cvtm < 25).flatten(0, 2).numpy() mask[m] = color_mask mask[m & border_mask, 3] *= 1.0 / 0.35 color, alpha = mask[..., :3], mask[..., -1:] orig_image = orig_image.astype(np.float32) / 255 overlay = alpha * color + (1 - alpha) * orig_image overlay = (overlay * 255).astype(np.uint8) return overlay @spaces.GPU def infer_radio(image): """Define the function to generate the output.""" model.cuda() conditioner.cuda() sam.cuda() sam_generator = SamAutomaticMaskGenerator(sam, output_mode="binary_mask") # PCA feature visalization padded_image=pad_image_to_multiple_of(image, multiple=256) width, height = padded_image.size pixel_values = image_processor(images=padded_image, return_tensors='pt').pixel_values pixel_values = pixel_values.to(torch.bfloat16).cuda() pixel_values = conditioner(pixel_values) _, features = model(pixel_values)["backbone"] num_rows = height // model.patch_size num_cols = width // model.patch_size features = features.detach() features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float() pca_viz = get_pca_map(features, (height, width), interpolation='bilinear') # SAM feature visualization resized_image = center_crop_resize(image) image_array = np.array(image) print("image size", image_array.shape) #image_array = np.transpose(image_array, (2, 0, 1)) masks = sam_generator.generate(image_array) overlay = visualize_anns(image_array, masks) return pca_viz, overlay, f"{features.shape}" title = """RADIO: Reduce All Domains Into One""" description = """ # RADIO [AM-RADIO](https://github.com/NVlabs/RADIO) is a framework to distill Large Vision Foundation models into a single one. RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones. Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence. Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images. # Instructions Paste an image into the input box or pick one from the gallery of examples and then click the "Submit" button. The RADIO backbone features are processed with a PCA projection to 3 channels and displayed as an RGB channels. The SAM features are processed using the SAM decoder and shown as an overlay on top of the input image. """ inputs = [ gr.Image(type="pil") ] outputs = [ gr.Image(label="PCA Feature Visalization"), gr.Image(label="SAM Masks"), gr.Textbox(label="Feature Shape"), ] # Create the Gradio interface demo = gr.Interface( fn=infer_radio, inputs=inputs, examples="./samples/", outputs=outputs, title=title, description=description, cache_examples=False ) if __name__ == "__main__": demo.launch()