File size: 29,286 Bytes
401978c
 
 
 
 
 
 
 
 
8fec102
401978c
 
 
 
8fec102
401978c
 
 
8fec102
401978c
 
 
 
 
 
 
 
8fec102
 
 
 
401978c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5545230
401978c
5545230
 
 
 
401978c
5545230
401978c
5545230
 
401978c
5545230
401978c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5545230
401978c
 
 
 
 
 
 
 
5545230
401978c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5545230
401978c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
# Description: Classification models
from transformers import AutoModel, AutoTokenizer, BatchEncoding, TrainingArguments, Trainer
from functools import partial
from huggingface_hub import snapshot_download
from huggingface_hub.constants import HF_HUB_CACHE
from accelerate import Accelerator
from accelerate.utils import find_executable_batch_size as auto_find_batch_size
from datasets import load_dataset, Dataset
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import json
import os
from tqdm import tqdm
import pandas as pd

import matplotlib.pyplot as plt
from sklearn.metrics import (
    ConfusionMatrixDisplay,
    accuracy_score,
    classification_report,
    confusion_matrix,
    f1_score,
    recall_score
)

BASE_PATH = os.path.dirname(os.path.abspath(__file__))


class MultiHeadClassification(nn.Module):
    """
    MultiHeadClassification

    An easy to use multi-head classification model. It takes a backbone model and a dictionary of head configurations.
    It can be used to train multiple classification tasks at once using a single backbone model.

    Apart from joint training, it also supports training individual heads separately, providing a simple way to freeze
    and unfreeze heads.

    Example:
    >>> from transformers import AutoModel, AutoTokenizer
        >>> from torch.optim import AdamW
        >>> import torch
        >>> import time
        >>> import torch.nn as nn
        >>>
        >>> # Manually load backbone model to create model
        >>> backbone = AutoModel.from_pretrained('BAAI/bge-m3')
        >>> model = MultiHeadClassification(backbone, {'binary': 2, 'sentiment': 3, 'something': 4}).to('cuda')
        >>> print(model)
        >>> # Load tokenizer for data preprocessing
        >>> tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
        >>> # some training data
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt", padding=True, truncation=True)
        >>> optimizer = AdamW(model.parameters(), lr=5e-4)
        >>> samples = tokenizer(["Hello, my dog is cute", "Hello, my dog is cute", "I like turtles"], return_tensors="pt", padding=True, truncation=True).to('cuda')
        >>> labels = {'binary': torch.tensor([0, 0, 1]), 'sentiment': torch.tensor([0, 1, 2]), 'something': torch.tensor([0, 1, 2])}
        >>> model.freeze_backbone()
        >>> model.train(True)
        >>> for i in range(10):
        ...     optimizer.zero_grad()
        ...     outputs = model(samples)
        ...     loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
        ...     loss.backward()
        ...     optimizer.step()
        ...     print(loss.item())
        ...     #time.sleep(1)
        ... print(model(samples))
        >>> # Save full model
        >>> model.save('model.pth')
        >>> # Save head only
        >>> model.save_head('binary', 'binary.pth')
        >>> # Load full model
        >>> model = MultiHeadClassification(backbone, {}).to('cuda')
        >>> model.load('model.pth')
        >>> # Load head only
        >>> model = MultiHeadClassification(backbone, {}).to('cuda')
        >>> model.load_head('binary', 'binary.pth')
        >>> # Adding new head
        >>> model.add_head('new_head', 3)
        >>> print(model)
        >>> # extend dataset with data for new head
        >>> labels['new_head'] = torch.tensor([0, 1, 2])
        >>> # Freeze all heads and backbone
        >>> model.freeze_all()
        >>> # Only unfreeze new head
        >>> model.unfreeze_head('new_head')
        >>> model.train(True)
        >>> for i in range(10):
        ...     optimizer.zero_grad()
        ...     outputs = model(samples)
        ...     loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
        ...     loss.backward()
        ...     optimizer.step()
        ...     print(loss.item())
        >>> print(model(samples))

    Args:
        backbone (transformers.PreTrainedModel): A pretrained transformer model
        head_config (dict): A dictionary with head configurations. The key is the head name and the value is the number
            of classes for that head.
    """
    def __init__(self, backbone, head_config, dropout=0.1, l2_reg=0.01):
        super().__init__()
        self.backbone = backbone
        self.num_heads = len(head_config)
        self.heads = nn.ModuleDict({
            name: nn.Linear(backbone.config.hidden_size, num_classes)
            for name, num_classes in head_config.items()
        })
        self.do = nn.Dropout(dropout)
        self.l2_reg = l2_reg
        self.device = 'cpu'
        self.torch_dtype = torch.float16
        self.head_config = head_config

    def forward(self, x, head_names=None) -> dict:
        """
        Forward pass of the model.

        Requires tokenizer output as input. The input should be a dictionary with keys 'input_ids', 'attention_mask'.

        Args:
            x (dict): Tokenizer output
            head_names (list): (optional) List of head names to return logits for. If None, returns logits for all heads.
        
        Returns:
            dict: A dictionary with head names as keys and logits as values
        """
        x = self.backbone(**x, return_dict=True, output_hidden_states=True).last_hidden_state[:, 0, :]
        x = self.do(x)
        if head_names is None:
            return {name: head(x) for name, head in self.heads.items()}
        return {name: head(x) for name, head in self.heads.items() if name in head_names}

    def get_l2_loss(self):
        """
        Getter for L2 regularization loss

        Returns:
            torch.Tensor: L2 regularization loss
        """
        l2_loss = torch.tensor(0.).to(self.device)
        for param in self.parameters():
            if param.requires_grad:
                l2_loss += torch.norm(param, 2)
        return (self.l2_reg * l2_loss).to(self.device)

    def to(self, *args, **kwargs):
        super().to(*args, **kwargs)
        if isinstance(args[0], torch.dtype):
            self.torch_dtype = args[0]
        elif isinstance(args[0], str):
            self.device = args[0]
        return self

    def load_head(self, head_name, path):
        """
        Load head from a file

        Args:
            head_name (str): Name of the head
            path (str): Path to the file

        Returns:
            None
        """
        model = torch.load(path)
        if head_name in self.heads:
            num_classes = model['weight'].shape[0]
            self.heads[head_name].load_state_dict(model)
            self.to(self.torch_dtype).to(self.device)
            self.head_config[head_name] = num_classes
            return

        assert model['weight'].shape[1] == self.backbone.config.hidden_size
        num_classes = model['weight'].shape[0]
        self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
        self.heads[head_name].load_state_dict(model)
        self.head_config[head_name] = num_classes

        self.to(self.torch_dtype).to(self.device)

    def save_head(self, head_name, path):
        """
        Save head to a file

        Args:
            head_name (str): Name of the head
            path (str): Path to the file
        """
        torch.save(self.heads[head_name].state_dict(), path)

    def save(self, path):
        """
        Save the full model to a file

        Args:
            path (str): Path to the file
        """
        torch.save(self.state_dict(), path)

    def load(self, path):
        """
        Load the full model from a file

        Args:
            path (str): Path to the file
        """
        self.load_state_dict(torch.load(path))
        self.to(self.torch_dtype).to(self.device)

    def save_backbone(self, path):
        """
        Save the backbone to a file

        Args:
            path (str): Path to the file
        """
        self.backbone.save_pretrained(path)

    def load_backbone(self, path):
        """
        Load the backbone from a file

        Args:
            path (str): Path to the file
        """
        self.backbone = AutoModel.from_pretrained(path)
        self.to(self.torch_dtype).to(self.device)

    def freeze_backbone(self):
        """ Freeze the backbone """
        for param in self.backbone.parameters():
            param.requires_grad = False

    def unfreeze_backbone(self):
        """ Unfreeze the backbone """
        for param in self.backbone.parameters():
            param.requires_grad = True

    def freeze_head(self, head_name):
        """
        Freeze a head by name

        Args:
            head_name (str): Name of the head
        """
        for param in self.heads[head_name].parameters():
            param.requires_grad = False

    def unfreeze_head(self, head_name):
        """
        Unfreeze a head by name

        Args:
            head_name (str): Name of the head
        """
        for param in self.heads[head_name].parameters():
            param.requires_grad = True

    def freeze_all_heads(self):
        """ Freeze all heads """
        for head_name in self.heads.keys():
            self.freeze_head(head_name)

    def unfreeze_all_heads(self):
        """ Unfreeze all heads """
        for head_name in self.heads.keys():
            self.unfreeze_head(head_name)

    def freeze_all(self):
        """ Freeze all """
        self.freeze_backbone()
        self.freeze_all_heads()

    def unfreeze_all(self):
        """ Unfreeze all """
        self.unfreeze_backbone()
        self.unfreeze_all_heads()

    def add_head(self, head_name, num_classes):
        """
        Add a new head to the model

        Args:
            head_name (str): Name of the head
            num_classes (int): Number of classes for the head
        """
        self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
        self.heads[head_name].to(self.torch_dtype).to(self.device)
        self.head_config[head_name] = num_classes

    def remove_head(self, head_name):
        """
        Remove a head from the model
        """
        if head_name not in self.heads:
            raise ValueError(f'Head {head_name} not found')
        del self.heads[head_name]
        del self.head_config[head_name]

    @classmethod
    def from_pretrained(cls, model_name, head_config=None, dropout=0.1, l2_reg=0.01):
        """
        Load a pretrained model from Huggingface model hub

        Args:
            model_name (str): Name of the model
            head_config (dict): Head configuration
            dropout (float): Dropout rate
            l2_reg (float): L2 regularization rate
        """
        if head_config is None:
            head_config = {}
        # check if model exists locally
        hf_cache_dir = HF_HUB_CACHE
        model_path = os.path.join(hf_cache_dir, model_name)
        if os.path.exists(model_path):
            return cls._from_directory(model_path, head_config, dropout, l2_reg)

        model_path = snapshot_download(repo_id=model_name, cache_dir=hf_cache_dir)
        return cls._from_directory(model_path, head_config, dropout, l2_reg)

    @classmethod
    def _from_directory(cls, model_path, head_config, dropout=0.1, l2_reg=0.01):
        """
        Load a model from a directory

        Args:
            model_path (str): Path to the model directory
            head_config (dict): Head configuration
            dropout (float): Dropout rate
            l2_reg (float): L2 regularization rate
        """
        backbone = AutoModel.from_pretrained(os.path.join(model_path, 'pretrained/backbone.pth'))
        instance = cls(backbone, head_config, dropout, l2_reg)
        instance.load(os.path.join(model_path, 'pretrained/model.pth'))
        instance.head_config = {k: v. instance.heads}
        return instance

class MultiHeadClassificationTrainer:
    def __init__(self, **kwargs):
        self.model_conf = kwargs.get('model_conf', {})
        self.optimizer_conf = kwargs.get('optimizer_conf', {})
        self.scheduler_conf = kwargs.get('scheduler_conf', {})
        self.dropout = kwargs.get('dropout', 0.1)
        self.l2_loss_weight = kwargs.get('l2_loss_weight', 0.01)
        self.num_epochs = kwargs.get('num_epochs', 100)
        self.device = kwargs.get('device', 'cuda')
        self.train_run = kwargs.get('train_run', 0)
        self.name_prefix = kwargs.get('name_prefix', 'multihead-classification')
        self.use_lr_scheduler = kwargs.get('use_lr_scheduler', True)
        self.gradient_accumulation_steps = kwargs.get('gradient_accumulation_steps', 1)
        self.batch_size = kwargs.get('batch_size', 4)
        self.train_test_split = kwargs.get('train_test_split', 0.2)
        self.load_best = kwargs.get('load_best', True)
        self.auto_find_batch_size = kwargs.get('auto_find_batch_size', False)
        self.test_data = None
        self.accelerator = Accelerator()
        
        self.classifier = MultiHeadClassification(
            **self.model_conf
        ).to(torch.float16)
        self.classifier.freeze_backbone()
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_conf.get('tokenizer', self.classifier.backbone.name_or_path), model_max_length=128)

    def _batch_data(self, batch_size, data):
        return DataLoader(data, shuffle=True, batch_size=batch_size)

    def train(self, dataset_name: str = None, train_data: DataLoader = None, val_data: DataLoader = None, lr: float = None, num_epochs: int = None, target_heads: list[str] = None, batch_size: int = 4, sample_key=None, label_key=None):
        has_dataset = train_data is not None
        assert (dataset_name is not None and not has_dataset) or (has_dataset and dataset_name is None), 'Must provide either dataset or dataset_name'
        if dataset_name is not None:
            assert target_heads is not None, 'target_heads must be provided when using dataset_name'

        if sample_key is None:
            sample_key = 'sample'
        if label_key is None:
            label_key = 'label'

        self.accelerator.free_memory()
        self.classifier = self.accelerator.prepare(self.classifier)

        if dataset_name is not None:
            dataset = load_dataset(dataset_name)['train'].train_test_split(test_size=self.train_test_split)
            train_data = dataset['train']
            val_data = dataset['test'].train_test_split(test_size=0.5)
            self.test_data = val_data['test']
            val_data = val_data['train']

        if batch_size is not None:
            self.batch_size = batch_size

        if isinstance(train_data, Dataset):
            sample = next(iter(train_data))
            print('Tokenizing dataset...', sample, type(sample))
            is_string_dataset = isinstance(sample[0], str) if not isinstance(sample, dict) else isinstance(sample[sample_key], str)

            if is_string_dataset:
                if isinstance(sample, list):
                    train_data = train_data.map(lambda x: self.tokenizer([x[0]] if isinstance(x[0], str) else x[0], return_tensors="pt", padding=True, truncation=True), batched=True)
                    val_data = val_data.map(lambda x: self.tokenizer([x[0]] if isinstance(x[0], str) else x[0], return_tensors="pt", padding=True, truncation=True), batched=True)
                elif isinstance(sample, dict):
                    assert sample_key in sample and label_key in sample, 'Invalid dataset format'
                    train_data = train_data.map(lambda x: self.tokenizer([x[sample_key]] if isinstance(x[sample_key], str) else x[sample_key], return_tensors="pt", padding=True, truncation=True), batched=True)
                    val_data = val_data.map(lambda x: self.tokenizer([x[sample_key]] if isinstance(x[sample_key], str) else x[sample_key], return_tensors="pt", padding=True, truncation=True), batched=True)
                else:
                    raise ValueError('Invalid dataset format')

                create_train_data = partial(self._batch_data, data=train_data)
                create_val_data = partial(self._batch_data, data=val_data)

                if self.auto_find_batch_size:
                    train_data = auto_find_batch_size(create_train_data)()
                    val_data = auto_find_batch_size(create_val_data)()
                else:
                    train_data = create_train_data(self.batch_size)
                    val_data = create_val_data(self.batch_size)
            # otherwise, assume it's already tokenized
        else:
            assert train_data is not None and val_data is not None, 'train_data and val_data must be provided'
            assert isinstance(train_data, DataLoader) and isinstance(val_data, DataLoader), 'train_data and val_data must be DataLoader instances'

        optimizer_name = self.optimizer_conf.pop('optimizer', 'sgd')
        loss_name = self.optimizer_conf.pop('loss', 'crossentropy')
        if lr:
            self.optimizer_conf['lr'] = lr
        if num_epochs:
            self.num_epochs = num_epochs

        self.classifier.unfreeze_all()
        # freeze backbone
        print('Freezing backbone')
        self.classifier.freeze_backbone()
        # freeze all heads that are not in the training data

        if target_heads is None:
            sample = next(iter(train_data))
            if isinstance(sample, dict):
                train_heads = list(sample[label_key].keys())
            elif isinstance(sample, list):
                train_heads = list(sample[1].keys())
            else:
                raise ValueError('Invalid dataset format')
        else:
            train_heads = target_heads

        for head_name in self.classifier.heads.keys():
            if head_name not in train_heads:
                print(f'Freezing head {head_name}')
                self.classifier.freeze_head(head_name)

        self.classifier.to(self.device)
        self.classifier.train(True)
        loss_func = {'crossentropy': nn.CrossEntropyLoss, 'bce': nn.BCELoss}.get(loss_name, nn.CrossEntropyLoss)
        optimizer_class = {'sgd': optim.SGD, 'adam': optim.Adam}.get(optimizer_name, optim.SGD)
        optimizer = optimizer_class(self.classifier.parameters(), **self.optimizer_conf)

        scheduler = None
        if self.use_lr_scheduler:
            scheduler_class = {
                'plateau': optim.lr_scheduler.ReduceLROnPlateau, 
                'step': optim.lr_scheduler.StepLR,
            }.get(self.scheduler_conf.get('scheduler'), optim.lr_scheduler.ReduceLROnPlateau)
            scheduler = scheduler_class(optimizer, 'min', **self.scheduler_conf)

        history = self._train(loss_func(), optimizer, scheduler, self.accelerator.prepare(train_data), self.accelerator.prepare(val_data), train_heads, sample_key, label_key)
        if self.load_best:
            self.classifier.load(os.path.join(BASE_PATH, f'../train_runs/{self.name_prefix}-run-{self.train_run-1}-best-model.pth'))
        return self.classifier, history

    def _train(self, criterion, optimizer, scheduler, dataloader, val_dataloader, head_names, sample_key, label_key):
        average_acc = 0
        losses = []
        precisions = []
        best_prec = 0.0

        val_losses = []
        val_accs = []
        avg_val_acc = 0.0
        
        patience = 50
        reset_patience = 25
        patience_reset_counter = 0
        patience_counter = 0
        current_max = 0
        total_max = 0
        num_samples = len(dataloader)
        pbar = tqdm(total=self.num_epochs * num_samples, desc='Training model...')
        for epoch in range(self.num_epochs):
            self.classifier.train()  # Set the model to training mode
            running_loss = 0.0
            all_preds = {name: [] for name in head_names}
            all_labels = {name: [] for name in head_names}

            for step, sample in enumerate(dataloader):
                labels = {name: sample[label_key] for name in head_names}
                embeddings = BatchEncoding({k: torch.stack(v, dim=1).to(self.device) for k, v in sample.items() if k not in [label_key, sample_key]}).to(self.device)
                outputs = self.classifier(embeddings, head_names=head_names)  # Forward pass
                loss = sum([criterion(outputs[name].to(self.device), labels[name].to(self.device)) for name in labels.keys()])
                loss += self.l2_loss_weight * self.classifier.get_l2_loss().to(self.device)
                running_loss += loss.item()
                loss.backward()  # Backward pass
                if (step + 1) % self.gradient_accumulation_steps == 0:
                    optimizer.step()  # Update model parameters
                    optimizer.zero_grad()  # Zero the parameter gradients
                # Store predictions and labels for precision calculation
                for name in labels.keys():
                    preds = outputs[name][0].argmax().item()
                    all_labels[name].append(labels[name][0].cpu().numpy())
                    all_preds[name].append(preds)

                pbar.update(1)
                # clear memory
                torch.cuda.empty_cache()

            epoch_loss = running_loss / num_samples
            if scheduler:
                scheduler.step(epoch_loss)

            average_acc += np.mean([np.mean(np.abs(np.array(all_labels[name]) - np.array(all_preds[name])) ==  0) for name in head_names])
            average_acc /= 2.0
            if val_dataloader:
                val_loss, val_acc = self.validate(self.classifier, criterion, val_dataloader, head_names, sample_key, label_key)
                avg_val_acc += val_acc.item()
                avg_val_acc /= 2.0
                val_losses.append(val_loss)
                val_accs.append(val_acc)
            losses.append(epoch_loss)
            precisions.append(average_acc)
            if avg_val_acc > current_max:
                current_max = avg_val_acc
                self.classifier.save(os.path.join(BASE_PATH, f'../train_runs/{self.name_prefix}-run-{self.train_run}-best-model.pth'))
            best_prec = max(average_acc, best_prec)
            #print(f"Epoch {epoch+1}/{num_epochs} (LR: {scheduler.get_last_lr()[0]:.4e}), Loss: {epoch_loss:.4f}, Precision: {l:.4f}")
            pbar_data = {
                'epoch': epoch + 1,
                'loss': epoch_loss, 
                'avg_acc': average_acc,
                'acc_max': best_prec
            }
            if scheduler:
                pbar_data['lr'] = scheduler.get_last_lr()[0]
            if val_dataloader:
                pbar_data['val_loss'] = val_loss
                pbar_data['val_acc'] = val_acc
                pbar_data['avg_val_acc'] = avg_val_acc
            pbar.set_postfix(pbar_data)
            # clear memory
            torch.cuda.empty_cache()

        pbar.close()
        param_dict = {
            'dropout': self.dropout,
            'model_conf': {k:v for k, v in self.model_conf.items() if k not in ['tokenizer', 'backbone']},
            'optimizer_conf': self.optimizer_conf,
            'scheduler_conf': self.scheduler_conf,
            'l2_loss_weight': self.l2_loss_weight,
            'num_epochs': self.num_epochs,
            'device': self.device,
            'train_run': self.train_run,
            'name_prefix': self.name_prefix,
            'use_lr_scheduler': self.use_lr_scheduler,
            'metrics': {
                'loss': losses,
                'val_loss': val_losses,
                'precision': precisions,
                'val_precision': val_accs
            }
        }
        with open(os.path.join(BASE_PATH, f'../train_runs/{self.name_prefix}-train-run-{self.train_run}.json'), 'w') as f:
            json.dump(param_dict, f)
        print("Training complete!")
        self.train_run += 1

        return param_dict

    def _plot_history(self, loss, val_loss, precision, val_precision):
        fig = plt.figure(figsize=(15,7))
        ax = plt.subplot(1,2, 1)
        ax.set_title('loss')
        plt.plot(range(len(loss)), loss, 'g--', label='train_loss')
        plt.plot(range(len(loss)), val_loss, 'r--', label='val_loss')
        plt.yscale('log')
        plt.legend()
        ax = plt.subplot(1,2, 2)
        ax.set_title('accuracy')
        plt.plot(range(len(precision)), precision, 'g--', label='prec')
        plt.plot(range(len(precision)), val_precision, 'r--',label='val_prec')
        plt.legend()
        return fig

    def validate(self, model, criterion, dataloader, head_names=None, sample_key='sample', label_key='label'):
        running_loss = 0
        num_samples = len(dataloader)
        if head_names is None:
            sample = next(iter(dataloader))[1]
            head_names = list(sample.keys())

        all_labels = {name: [] for name in head_names}
        all_preds = {name: [] for name in head_names}

        num_labels = {name: model.heads[name].out_features for name in head_names}

        model.train(False)
        for sample in dataloader:
            labels = {name: sample[label_key] for name in head_names}
            embeddings = BatchEncoding({k: torch.stack(v, dim=1).to(self.device) for k, v in sample.items() if k not in [label_key, sample_key]}) 
            outputs = model(embeddings)  # Forward pass
            loss = sum([criterion(outputs[name].to(self.device), labels[name].to(self.device)) for name in head_names])
            loss += self.l2_loss_weight * model.get_l2_loss().to(self.device)
            running_loss += loss.item()
            # Store predictions and labels for precision calculation
            for name in head_names:
                preds = outputs[name][0].argmax().item()
                all_labels[name].append(labels[name][0].cpu().numpy())
                all_preds[name].append(preds)
            torch.cuda.empty_cache()
        return running_loss / num_samples, np.mean([np.mean(np.abs(np.array(all_labels[name]) - np.array(all_preds[name])) ==  0) for name in head_names])

    def eval(self, label_map, test_set=None, sample_key='sample', label_key='label'):
        if test_set is None:
            assert self.test_data is not None, 'No test data provided'
            test_set = self.test_data
            sample = next(iter(test_set))
            is_string_dataset = isinstance(sample[0], str) if not isinstance(sample, dict) else isinstance(sample[sample_key], str)

            if is_string_dataset:
                if isinstance(sample, list):
                    test_set = test_set.map(lambda x: self.tokenizer([x[0]] if isinstance(x[0], str) else x[0], return_tensors="pt", padding=True, truncation=True), batched=True)
                elif isinstance(sample, dict):
                    assert sample_key in sample and label_key in sample, 'Invalid dataset format'
                    test_set = test_set.map(lambda x: self.tokenizer([x[sample_key]] if isinstance(x[sample_key], str) else x[sample_key], return_tensors="pt", padding=True, truncation=True), batched=True)
                else:
                    raise ValueError('Invalid dataset format')

                test_set = DataLoader(test_set, shuffle=True, batch_size=self.batch_size)
        self.classifier.to(self.device)
        return self._eval_model(test_set, label_map, sample_key, label_key)

    def _eval_model(self, dataloader, label_map, sample_key, label_key):
        self.classifier.train(False)
        eval_heads = list(label_map.keys())
        y_pred = {h: [] for h in eval_heads}
        y_test = {h: [] for h in eval_heads}
        for sample in tqdm(dataloader, total=len(dataloader), desc='Evaluating model...'):
            labels = {name: sample[label_key] for name in eval_heads}
            embeddings = BatchEncoding({k: torch.stack(v, dim=1).to(self.device) for k, v in sample.items() if k not in [label_key, sample_key]}) 
            output = self.classifier(embeddings.to('cuda'), head_names=eval_heads)
            for head in eval_heads:
                y_pred[head].extend(output[head].argmax(dim=1).cpu())
                y_test[head].extend(labels[head])
            torch.cuda.empty_cache()

        accuracies = {h: accuracy_score(y_test[h], y_pred[h]) for h in eval_heads}
        f1_scores = {h: f1_score(y_test[h], y_pred[h], average="macro") for h in eval_heads}
        recalls = {h: recall_score(y_test[h], y_pred[h], average='macro') for h in eval_heads}
        
        report = {}
        for head in eval_heads:
            cm = confusion_matrix(y_test[head], y_pred[head], labels=list(label_map[head].keys()))
            disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=list(label_map[head].values()))
            clf_report = classification_report(
                y_test[head], y_pred[head], output_dict=True, target_names=list(label_map[head].values())
            )
            del clf_report["accuracy"]
            clf_report = pd.DataFrame(clf_report).T.reset_index()
            report[head] = dict(
                clf_report=clf_report, confusion_matrix=disp, metrics={'accuracy': accuracies[head], 'f1': f1_scores[head], 'recall': recalls[head]}
            )
        return report